Almagesto: Libro V - Capítulo 11

Capítulo Anterior Contenidos Capítulo Siguiente

{Sobre las Paralajes de la Luna}

[1]

Con lo [descrito] anteriormente hemos dispuesto acerca de los [elementos] necesarios para encontrar las Posiciones Verdaderas de la Luna. No obstante, en el caso de la Luna hay un problema adicional, incluso a los sentidos, que es que su Posición Aparente no coincide con su Posición Verdadera . Porque, como dijimos (al principio del Libro IV Capítulo 1), la Tierra no mantiene la proporción de un punto a la distancia de la Esfera de la Luna. Por lo tanto tanto es necesario y apropiado discutir las Paralajes de la Luna, especialmente con el fin de tratar la teoría de los eclipses solares, entre otros fenómenos. Por medio de las paralajes lunares será posible, dada la posición verdadera [de la Luna], [por ej. su posición] con respecto al centro de la Tierra y de la Eclíptica, determinar su posición como observada desde el punto de vista del observador, que está [ubicado] en algún punto sobre la superficie de la Tierra, y, vice versa, determinar la posición verdadera desde la posición aparente. Ahora bien, esta es una característica del tipo de investigación en la que uno no puede hallar la cantidad de la paralaje en situaciones individuales a menos que se de primero una proporción de la distancia [del cuerpo al radio de la Tierra], ni [tampoco] que uno pueda hallar la proporción de la distancia sin que la paralaje siendo dada alguna situación en particular. Por lo tanto para estos cuerpos, sin una paralaje perceptible, a saber, aquellos donde [la distancia] en la que la Tierra mantiene la proporción de un punto, entonces, obviamente, es imposible encontrar la proporción de la distancia. Pero en el caso de aquellos cuerpos, como [por ej.] la Luna, que exhiben una paralaje, el único procedimiento apropiado es, primero, dadas algunas paralajes en particular, encontrar la proporción de la distancia. Dado que es posible hacer una observación de una paralaje [particular] de este tipo por sí misma, aunque completamente imposible determinar la cantidad de la distancia [por sí misma].

Ahora, Hiparco utilizó el Sol como la base principal de su examen en este problema. Porque como se desprende de ciertas otras características del Sol y de la Luna (que se discutirán subsecuentemente) que, dada la distancia hasta una de las luminarias, también es dada la distancia hasta la otra, Hiparco trata de demostrar la distancia de la Luna adivinando la distancia al Sol. Primero supone que el Sol tiene la menor paralaje perceptible, con el fin de hallar su distancia, y luego utiliza un eclipse solar que él [mismo] cita; en un instante asume que el Sol no tiene una paralaje notable, en otro tiene una paralaje suficientemente grande [a ser observada]. Como resultado la proporción de la distancia de la Luna le resulta diferente para cada una de las hipótesis que expone [más] adelante, porque es completamente incierto en el caso del Sol, no sólo respecto cuán grande sea su paralaje, sino incluso si este tiene absolutamente alguna paralaje [2].

Capítulo Anterior Contenidos Capítulo Siguiente
Libro V
Capítulos
01 02 03
04 05 06
07 08 09
10 11 12
13 14 15
16 17 18
19

Notas de referencia

  1. Sobre los capítulos 11 y 12 ver HAMA 100-1, Pedersen 203-4.
  2. Este pasaje es suplido por el comentario de Papo de Alejandría ad loc. (Rome [1] I 67-8), el cual extrae algunos detalles de los dos procedimientos de Hiparco de los Libros 1 y 2 respectivamente de su último tratado "Sobre Tamaños y Distancias". Ver Toomer [9] por los detalles de las importantes consecuencias históricas que pueden ser esbozadas (señalando que el eclipse solar referido es aquel del 14 de Marzo de -189), siendo [base] del trabajo de Swerdlow, "Hiparco".