Diferencia entre revisiones de «Almagesto: Libro V - Capítulo 02»

sin resumen de edición
Cuando este tipo de observación fue hecha sin un posterior análisis fue hallado, desde ambas observaciones [aquellas] registradas por [[w:es:Hiparco_de_Nicea|'''Hiparco''']] y desde las nuestras, que la distancia de la Luna desde el Sol estuvo algunas veces de acuerdo con aquella calculada desde la simple hipótesis anterior, y algunas veces en desacuerdo, siendo la discrepancia menor en algunos momentos y en otros mayor. Pero cuando prestamos más atención a las circunstancias de la anomalía en cuestión, y la examinamos más cuidadosamente sobre un período continuo [de tiempo], descubrimos que en la conjunción y en la oposición ([[w:es:Sizigia|'''Sizigias''']]) la discrepancia [entre la observación y el cálculo]] es tanto imperceptible o pequeña, siendo la diferencia de un tamaño explicable por la [[w:es:Paralaje#Paralaje_lunar|'''Paralaje lunar''']]; en ambas [[w:es:Cuadratura_(astronomía)|'''Cuadraturas''']], sin embargo, mientras la discrepancia es muy pequeña o ninguna cuando la Luna está en su apogeo o en su perigeo del [[Almagesto:_Sistema_Ptolemaico_o_Sistema_Geocéntrico|'''Epiciclo''']], esta alcanza una máxima [discrepancia] cuando [la Luna] está cerca de su velocidad media y [por lo tanto] la '''Ecuación de la Primera Anomalía''' es también una máxima; además, en ambas cuadraturas, cuando la primera anomalía es sustractiva [negativa] la posición observada de la Luna incluso esta en una longitud más pequeña que aquella calculada sustrayendo la ecuación de la primera anomalía, pero cuando la primera anomalía es aditiva [positiva] su verdadera posición es incluso mayor [que aquella calculada de sumar la Ecuación de la Primera Anomalía], y el tamaño [valor] de ésta discrepancia esta relacionada muy cerca al tamaño de la ecuación de la primera anomalía. Desde estas circunstancias sólo pudimos observar que debemos suponer el epiciclo de la Luna sea transportado sobre un círculo excéntrico, estando más alejado de la Tierra en conjunción y en oposición, y más cercano a la Tierra en ambas cuadraturas. Esto sucederá si modificamos la primera Hipótesis a lo largo de algunas de las siguientes líneas.
 
Imaginar el círculo (en el plano inclinado de la Luna) concéntrico con la [[w:es:Eclíptica|'''Eclíptica''']] moviéndose hacia adelante, como antes [lo hicimos] [[Almagesto:_Libro_IV_-_Capítulo_06|Libro IV Capítulo 6]], (para representar el [movimiento en] latitud) alrededor de los polos de la eclíptica con una velocidad igual al incremento del movimiento en latitud sobre el movimiento en longitud. Nuevamente, imaginar la Luna atravesando el llamado epiciclo (moviéndose hacia adelante sobre su arco del apogeo) con una velocidad correspondiente a una vuelta de la primera anomalía. Ahora, en este plano inclinado, suponemos dos movimientos tomando lugar, en direcciones opuestas, ambos uniformes con respecto al centro de la eclíptica: uno de estos transporta el centro del epiciclo hacia la parte trasera a través de los signos con una velocidad de movimiento en latitud, mientras el otro [movimiento] transporta el centro y apogeo de la excéntrica, que asumimos ubicados en el mismo plano [inclinado], (el centro del epiciclo estará en todo momento localizado sobre esta excéntrica), hacia adelante a través [por ej. en orden reverso de] los signos por una cantidad correspondiente a la diferencia entre el movimiento en latitud y la elongación doble (la elongación siendo la cantidad por la cual el movimiento medio en longitud de la Luna excede el movimiento medio del Sol). Por lo tanto, para dar un ejemplo, en un día el centro del epiciclo recorre cerca de 13;14º en movimiento de latitud hacia la parte trasera [de los cielos] a través de los signos, pero parece haber atravesado en longitud 13;11º sobre la eclíptica, dado que todo el círculo inclinado [de la Luna] atraviesa la diferencia de 0;3º en dirección opuesta, [por ej.] hacia adelante, [mientras tanto] el apogeo de la excéntrica, en una vuelta, recorre 11;9º en dirección opuesta, (nuevamente hacia adelante): esta es la cantidad por la que la elongación doble, de 24;23º, excede el movimiento en latitud, de 13;14º. La combinación de ambos de estos movimientos, que toman lugar en direcciones opuestas, tal como dijimos, alrededor del centro de la eclíptica, producirá como resultado que el radio transportando el centro del epiciclo y el radio transportando el centro de la excéntrica estarán separados por un arco cuya suma es de 13;14º y 11;9º, y será el doble de la cantidad de la elongación (que es de aproximadamente 12;11 ½º). Por lo tanto el epiciclo recorrerá la excéntrica dos veces durante un [[w:es:Mes#Mes_sinódico|'''Mes Sinódico Medio''']]. Asumimos que este [epiciclo] vuelve al apogeo de la excéntrica en la conjunción y oposición media.
 
En orden de ilustrar los detalles de la hipótesis, imaginar [Fig. 5.1] el círculo ABGD en el plano inclinado de la Luna concéntrico con la eclíptica, con centro en E y diámetro AEG. Sea el apogeo de la excéntrica, el centro del epiciclo, el límite Norte, el comienzo de Aries y el Sol medio, [todo] esté localizado en el punto A en el mismo instante.
5332

ediciones