Ante todo, sin ese artificio matemático, la teoría de la relatividad de Einstein sería impensable. Importa en esto la analogía de la invariante fundamental G con el cuadrado de una distancia. En lo futuro, para la magnitud:
emplearemos la designación de distancia cuatridimensional, habiendo de conservar clara conciencia de que esa palabra se entiende en sentido traslaticio.
El sentido propio de la magnitud s es, según nuestras explicaciones anteriores sobre la invariante G, fácil de comprender. Si nos limitamos al plano xt, será:
Ahora bien; G es positivo para toda línea universal de espacio; por tanto, s, como raíz cuadrada de un número positivo, es una cantidad real; entonces el punto universal x, t, si se elige un sistema conveniente de referencia, puede hacerse simultáneo con el punto cero. En tal caso es t = 0 y , esto es, la distancia espacial entre el punto cero y el punto universal.
Para toda línea universal de tiempo, G es negativo y, por tanto, s imaginario; entonces hay un sistema de coordenadas, en el cual x = 0 y . En todo caso tiene s una significación sencilla y debe considerarse como magnitud mensurable.
Terminamos con esto la exposición de la teoría especial de la relatividad de Einstein. Su resultado podemos resumirlo del modo siguiente:
No sólo las leyes de la mecánica, sino las de todos los procesos naturales, y particularmente los fenómenos electromagnéticos, son perfectamente idénticas, en sistemas de referencia infinitamente numerosos, que se hallen en movimiento uniforme de traslación relativamente unos a otros; estos sistemas se llaman inerciales. En cada uno de estos sistemas rige una especial medida para longitudes y tiempos, y estas medidas hállanse relacionadas entre sí por medio de las transformaciones de Lorentz.