haciendo que las placas de metal cargadas tomasen parte en el movimiento. Estas dan una corriente de convección de la fuerza ev y la capa aisladora debería compensarla exactamente a causa de las cargas casi iguales y opuestas, según Hertz. Pero Eichenwald encontró que no es tal el caso; más bien obtuvo una corriente totalmente independiente de la materia del aislador. Esto mismo era de esperar, según el resultado de Röntgen sobre el arrastre parcial; pues la corriente procedente del aislador es , y el primer miembro de la misma es compensado por la corriente de convección ev y queda la corriente , que es independiente de la constante de dielectricidad ε.
2. b) Imaginemos un campo magnético paralelo al eje z, realizado, v. gr., por un imán de herradura, y un trozo de materia no conductora moviéndose por el campo en la dirección x (fig. 98). Como no hay no-conductores que sean magnetizables (perceptiblemente), admitiremos μ = 1. Los dos planos límites del trozo aislador, que sean perpendiculares al eje y, cubrámoslos de metal; estas cubiertas metálicas estarán unidas a un electrómetro, de modo que pueda medirse la carga que se produzca en ellas.
Este experimento corresponde exactamente al experimento de inducción explicado en 1 b), sólo que, en lugar del conductor en movimiento, se pone un dieléctrico en movimiento. La ley de inducción puede aplicarse de la misma manera; exige la existencia de un campo eléctrico E = vH actuando en la dirección